Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Salud ment ; 35(2): 129-135, March-Apr. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-653877

ABSTRACT

The phrase "X is a gene for Y" and the preformationist concept of gene action that underlies it are inappropriate for psychiatric disorders such as depression, aggression, sexual orientation, obesity, infidelity, alcoholism, or schizophrenia. Drug addictions are complex, chronic, and mental diseases. Genetic studies of twins and families have suggested that genetic factors might account for 40 to 60% of the overall factors in the risk to the development of drug addictions. In addition, numerous studies aiming to discover genetic variants or candidate genes, including genome-wide linkage scans, candidate gene association studies, gene expression, and genome-wide association studies, have also suggested that multiple genes and genomic regions or markers might play important roles in the development of addictions. A primary behavioral pathology in drug addiction is the overpowering motivational strength and decreased ability to control the desire to obtain drugs. Among the most insidious characteristics of drug addiction is the recurring desire to take drugs even after many years of abstinence. Equally sinister is the compromised ability of addicts to suppress drug seeking in response to that desire even when confronted with seriously adverse consequences. The enduring vulnerability to relapse is a primary feature of the addiction disorder and has been identified as a point were pharmacotherapeutic intervention may be most effectively employed. In order to fashion rationale pharmacotherapy it is necessary to understand the neurobiological underpinnings of craving, relapse, choice, and control, and the last decade has seen significant advances, toward achieving this goal. The fact that the vulnerability to relapse in addicts can persist after years of abstinence implies that addiction is caused by long-lasting changes in brain function as a result of repeated drug use, genetic disposition, and environmental associations made with drugs use. Therefore, understanding neurobiological aspects of drug addiction requires the comprehension of the physiological mechanisms that convey to the enduring neuroplasticity. The goal of this review is to explore how the advances in ge-nomics and proteomics may unleash the understanding of the cellular underpinnings of drug addiction and how the recent advances in functional genomics and proteomics may be expected to improve dramatically the treatment of addictive disorders. Applying genomics and proteomics to drug addiction studies will lead to the identification of genes and their protein products that control the brain reward pathways of the brain and their adaptations to drugs of abuse, as well as variations in these genes and proteins that confer genetic risk for addiction and related disorders. Additionally, this review describes recent findings of addictive drugs-inducing altered changes in gene regulation which produce significant cellular modifications on neuronal function in both human and animal brains as detected in animal models of drug abuse. A major goal of drug abuse research is to identify and understand drug-induced changes in brain function that are common to most if not all drugs of abuse, as well as these may underlie drug dependence and addiction. This work describes recent studies whose purpose is to examine the drugs of abuse effect changes in gene and protein expression that converge in common molecular pathways. One of this recent reports using microarrays analysis to assay brain gene expression in the anterior prefrontal cortex (aPFC) of post mortem brains of 42 cocaine, cannabis and/or phencyclidine human cases compared to 30 individual cases, which were characterized by toxicology and drug abuse history. Another study depicted herewith is focused on how the use of drugs frequently begins and escalates during adolescence, with long-term adverse consequences. The study designed a rodent model of adolescence to mirror cocaine use patterns in teenagers. Microarrays analysis was employed to assay brain gene expression in post mortem PFC of rodents treated with cocaine during adolescence. Results from the study revealed that treatment caused acute alterations in the expression of genes encoding cell adhesion molecules and transcription factors within the PFC. Cocaine alters gene expression patterns and histone modification in the PFC. Furthermore observed decreases in histone metylation, which may indicate a role of chromatin remodeling in the observed changes in gene expression patterns. Chromatin remodeling is an important regulatory mechanism for cocaine-induced neural and behavioral plasticity in the striatum. Most of the gene expression changes induced by cocaine were transient. However, if early cocaine exposure triggered changes in cell structure/adhesion, the impact of those alterations could be long-lasting. It is important to consider that the PFC in humans is involved in a large range of different functions, including working memory, action planning, response inhibition, decision-making, reward processes, and social behavior. Any lasting impact cocaine has on these functions could be detrimental, particularly in adolescents. Findings suggest that exposure to cocaine during adolescence has far-reaching molecular and behavioral consequences in the rat PFC that develop over time and endure long after drug administration has ceased. These neuroadaptations could have serious implications, particularly in the developing brain. However, only a causal relationship between these cocaine-induced molecular and behavioral adaptations can be inferred at this time. Therefore, humans who abused cocaine, cannabis and/or phen-cyclidine share a decrease in transcription of calmoduline-related genes and increased transcription related to lipid/colesterol and Gol-gi/ER function. Acute exposure to drugs of abuse initiates molecular and cellular alterations in the central nervous system that lead to an increased overall vulnerability to addiction with subsequent drug exposures. These drug-induced alterations enhance molecular changes in gene transcription that result in the synthesis of new proteins. Therefore, one of the important goals of addiction research is to identify the drug-induced gene expression changes in specific brain structures shown to be vulnerable to the addictive properties of drugs of abuse. These changes represent common molecular features of drug abuse, which may underlie changes in synaptic function and plasticity that could have important ramification for decision-making capabilities in drug addiction. Eventually, all of these discoveries can be exploited for clinical applications as diverse as improved treatments diagnostic tests, and ultimately disease prevention and cure.


Una frase empleada en el argot científico en los primeros años de la era de la genética dictaba que "X es un gen para Y", en donde X representaba a un gen particular del genoma humano y Y correspondía a uno de los complejos trastornos de la conducta humana como la depresión, la agresión, la orientación sexual, la obesidad, la infidelidad, la esquizofrenia y la adicción. Sin embargo, ahora se sabe que la contribución genética a los trastornos psiquiátricos se debe a la acción conjunta de grupos de genes que de manera individual causarían sólo un pequeño impacto incapaz de desencadenar alteraciones conduc-tuales. La contribución de los grupos de genes aunada a un sinnúmero de factores ambientales y sociales es la causa de la amplia variedad de perturbaciones conductuales en el humano. De esta manera, la frase "X es un gen para Y", es inapropiado para los cuadros psiquiátricos. La conducta patológica más importante en la adicción es la búsqueda compulsiva de la droga y la pérdida del control en el deseo de obtenerla. Otra de las graves consecuencias de la adicción es el riesgo de recaídas de los individuos a pesar de tener varios años de abstinencia. Esta última característica ha sido el punto de elección para implementar medidas terapéuticas más eficientes. Para lograr que las terapias sean exitosas es necesario entender los mecanismos neurobiológicos que intervienen en los procesos de adquisición y consolidación del síndrome adictivo. Uno de los puntos que ha llamado la atención es el hecho de que el riesgo de las recaídas puede persistir durante varios años y ha permitido implicar la generación de cambios en la fisiología del cerebro que se mantienen por largos periodos. Así, es de suma relevancia comprender las bases neuro-biológicas de los procesos adictivos que ocasionan cambios en la plasticidad neural. La finalidad de esta revisión es analizar algunos ejemplos representativos de los recientes avances en el campo de las ciencias genó-micas que permiten ampliar el conocimiento de las implicaciones a nivel celular de los procesos adictivos y la importancia que tendrán dichos avances para mejorar la práctica psiquiátrica en general y, de manera específica, el tratamiento de las conductas adictivas. Se describen algunos de los trabajos recientes en los que se ha estudiado la modificación de la expresión génica como consecuencia de la administración de drogas de abuso en diferentes paradigmas de estudio, incluyendo estudios en los que se evalúa la similitud de los efectos ocasionado por tres drogas de abuso diferentes: cocaína, marihuana y fenilciclina. Finalmente se describen las implicaciones moleculares de las modificaciones en la expresión génica de proteínas que participan en diferentes procesos celulares, como el metabolismo del colesterol y los lípidos, las funciones del aparato de Golgi y el retículo endoplásmico, el tráfico intracelular en el citoesqueleto. Todos estos cambios representan modificaciones importantes en la función sináptica y la plasticidad neuronal. Esta información permitirá el desarrollo de aplicaciones clínicas que permitan implementar tratamientos efectivos, métodos de diagnóstico y en última instancia podrá ser de utilidad para prevenir, evitar o curar las adicciones.

2.
Salud ment ; 35(2): 137-145, March-Apr. 2012. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-653878

ABSTRACT

Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (e.g, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented (defined as Substance Dependence by the Diagnostic and Statistical Manual of Mental Disorders [DSM] of the American Psychiatric Association). Acute exposure to drugs of abuse initiates molecular and cellular alterations in the Central Nervous System that lead to an increased overall vulnerability to addiction with subsequent drug exposures. These drug-induced alterations employ changes in gene transcription that result in the synthesis of new proteins. Therefore, one of the important goals of addiction research is to identify the drug-induced gene expression changes in the specific brain structures related to the addictive properties of various drugs. The molecular and genomic mechanisms by which drugs of abuse induce neuroplastic changes related to addiction remain largely unknown. Several studies have evaluated changes in gene and protein expression profiles in the brain after administration of drugs of abuse. Exposure to psychostimulants induces the activity-dependent gene expression of several transcription activators and repressors. Genomic research strategies have recently transitioned from the search for unknown genes to the identification and evaluation of coordinated gene networks and transcriptional signatures. New opportunities arising from the analysis of these networks include identifying novel relationships between genes and signaling pathways, connecting biological processes with the regulation of gene transcription, and associating genes and gene expression with diseases. The identification of gene networks requires large gene expression data sets with multiple data points. Functional genomics methods, studying the steady-state levels of these mRNA species, such as quantitative RT-PCR (qRT-PCR), whole-genome microarray analysis, and next generation sequencing methods, provide sensitive and high-throughput approaches to quantitatively examining mRNA (and miRNA) species present within the cells of the Nervous System. Functional genomics studies can help to illuminate genes involved in the development of behaviors related to drug abuse and relapse liability, but cannot provide insight into post-translational modifications (e.g., phosphorylation and glycosylation of proteins after translation has occurred) or subcellular localization of the protein product. Therefore, using proteomic techniques presents the opportunity to assess the totality of gene expression, translation, modification, and localization. Unfortunately, the sensitivity of proteomic tools lags behind those of functional genomics. Moreover, examining the mRNA provides a restricted view of primarily the cell body. Indeed, from a systems biology standpoint, analysis of both mRNA and protein levels (as well as miRNA and epigenetic changes) will ultimately provide a more integrated view of the molecular underpinnings of addiction. When applying proteomic technologies to addiction research, an understanding of the power of proteomic analysis is essential. After genetic information is transcribed into mRNA, a template is provided to the cell from which proteins will be synthesized. Neuroproteomic studies offer great promise for increasing understanding of the biochemical basis of addiction. While proteomics is still an evolving field, proteomic approaches have proven useful for elucidating the molecular effects of several drugs of abuse. With a number of ongoing research programs in addiction proteomics and a growing number of investigators taking advantage of these tools, the addiction research field will benefit from a consideration of the capabilities and limitations of proteomic studies. As with other biomedical research fields, drug abuse research is making use of new proteomic capabilities to examine changes in protein expression and modification on a large scale. To obtain the maximum benefit and scientific advancement from these new technologies, a clear understanding of the power and limitations of neuroproteomics is necessary. With the main limitation of neuroproteomic studies being the complexity of the proteome, approaches that focus these studies need to be employed. The salient message is that there is not a single best technical approach for all studies and that the main driver for the choice of proteomic technology and experimental design should be the advancement of the understanding and treatment of drug abuse. An important area that has heretofore received limited attention is the experimental design and interpretation specific to neuro-proteomic studies of drug abuse. These challenges include choice of animal model, ensuring sample quality, the complexity of brain tissue, confirming discovery findings, data analysis strategies, and integration of large data sets with the existing literature. Epigenetics is the study of heritable changes other than those in the DNA sequence and encompasses two major modifications of DNA or chromatin: DNA methylation and post-translational modification of histones. In this context, now it is known that regulation of gene expression contribute to the long-term adaptations underlying the effects of drugs of abuse. The precise molecular events that are required for modification of chromatin and that underlie gene repression or activation have not been elucidated. Recent reports have addressed this question and demonstrated that drugs of abuse modify specific methyl-CpG-binding proteins that control histone acetylation and gene expression. Further elucidation of the wide-range of histone modifications and the ensuing consequences on gene expression will be necessarily before the potential for drug development can be realized. It is important to characterize the molecular alterations underlying chromatin remodeling and the regulation of the epigenetics events by drugs of abuse. It is clear that modification in gene expression by drugs of abuse promote cellular changes. This review is intended to provide guidance on recent advances in the field of drug addiction. This review also presents a number of experimental design and sample approaches that have been applied to genomic, proteomic and epigenetic studies of addiction. Coupled with new technologies for data collection, analysis, and reporting, these approaches represent the future of the addiction field and hold the key to unlocking the complex of profile of drug abuse disorders.


La adicción a las drogas es una enfermedad mental que se caracteriza por ocasionar graves implicaciones sociales, económicas y de salud de los individuos que la padecen. La exposición aguda a las drogas de abuso provoca alteraciones moleculares y celulares en el Sistema Nervioso Central que ocasionan una vulnerabilidad para sufrir adicción a subsecuentes exposiciones a sustancias de abuso diferentes. Las alteraciones inducidas por las drogas producen cambios en la transcripción de genes que resultan en la síntesis de nuevas proteínas. Uno de los objetivos importantes en la investigación en el campo de las adicciones es identificar los cambios en la expresión de genes inducidos por las drogas en estructuras específicas del cerebro que están relacionadas con las propiedades adictivas de diferentes sustancias. El campo de la genómica y la proteómica, aplicada al estudio de las adicciones, tiene como objetivo identificar a los genes y las proteínas candidatos involucrados en la regulación de los procesos adictivos. Se han logrado progresos considerables en la identificación de genes y proteínas que regulan las conductas complejas presentes en los procesos adictivos en modelos de animales y modelos de estudio en humanos con material obtenido post-mortem. Estos descubrimientos se han sumado a los esfuerzos por identificar los circuitos neurales implicados en las manifestaciones conductuales relacionadas con las adicciones. También han permitido la identificación de genes candidatos que podrán ser blancos de futuras estrategias terapéuticas desarrolladas para tratar los procesos adictivos. Los estudios de genómica funcional han permitido identificar algunos de los genes involucrados en el desarrollo de las conductas adictivas, pero no tienen la capacidad de proporcionar información sobre las modificaciones post-traduccionales ni de la localización sub-celular de las proteínas para las que codifican los genes. Por lo tanto, la incorporación de estudios proteómicos ofrece la oportunidad de lograr evaluar, en su totalidad, la expresión, la traducción, las modificaciones y la localización de los genes y sus productos de expresión. Para obtener los máximos beneficios y avances con el empleo de estas nuevas tecnologías, deben comprenderse en su totalidad los alcances y limitaciones de la neuroproteómica. En este sentido, se debe tener especial cuidado en la elección del modelo de estudio, asegurar la calidad de la muestra, la complejidad de la estructura en estudio, confirmar los resultados obtenidos, las estrategias de análisis de resultados y la integración de los datos obtenidos con los ya reportados en la literatura científica. Los estudios recientes sobre los mecanismos moleculares que controlan los cambios inducidos por las drogas de abuso sobre la función transcipcional, la conducta y la plasticidad sináptica han identificado el importante papel que desempeña la remodelación de cromatina en la regulación y estabilidad de los programas genéticos neuronales mediados por las drogas y la subsecuente manifestación de las conductas adictivas. Se han identificado alteraciones epigenéticas sobre el genoma, tales como metilación del DNA y modificaciones en la función de las proteínas histonas. Estos importantes mecanismos se ven afectados como una respuesta neurobiológica a la administración de sustancias de abuso. Esta revisión pretende mostrar algunos de los avances recientes en el campo de las adicciones, presentando una breve descripción de los hallazgos que emplean aproximaciones genómicas, proteómicas y epigenéticas. Las implicaciones de estos estudios moleculares ponen de manifiesto nuevos conocimientos sobre el probable desarrollo de intervenciones terapéuticas en el futuro.

3.
Salud ment ; 34(6): 491-496, nov.-dic. 2011. ilus, tab
Article in English | LILACS-Express | LILACS | ID: lil-632855

ABSTRACT

This study aimed for the validation of the General Cocaine Craving Questionnaire (CCQ-G) in Mexican population. To achieve this, the scale was applied by interviewing 233 cocaine users, of which 214 met inclusion criteria for the final analysis. This study's inclusion criterion was: not having a psychotic episode and/or manic or depressive or cognitive damage that could impede adequate test solving. The sample consisted entirely of male participants, aged between 18 and 59 years (M = 27, SD = 9.2). All participants met DSM-IV-TR criteria for substance abuse and dependence. 83% of the sample were polydrug users, but reported cocaine as their main drug of use. 74.8% of the sample reported previously having attended treatment for cocaine dependence. At the time of the study, all of the sample was under residential treatment between their 4th and 12th week and was distributed in 5 different institutions whose treatment model is grounded in the philosophy of Alcoholics Anonymous. After factor analysis was performed, the model was adjusted to three factors. Factor 1 referred to intention to use cocaine, factor 2 expressed desire for cocaine consumption, and factor 3 referred to positive expectancies for cocaine consumption. The instrument showed good internal consistency with an α=.87.


El presente estudio tuvo como objetivo validar en la población mexicana la escala Cocaine Craving Questionnaire General (CCQ-G). Para conseguir tal objetivo, se entrevistó y aplicó la escala a una N = 233 consumidores de cocaína que decidieron participar voluntariamente en el estudio. Los criterios para ingresar al estudio fueron los siguientes: no sufrir un episodio psicótico, maniaco, depresivo o daño cognitivo que impidiera resolver adecuadamente la escala. La muestra estuvo constituida por participantes masculinos, que reunían los criterios del DSM-IV-TR para abuso y dependencia a sustancias, con edades comprendidas entre 18 y 59 años (M=27, SD=9.2). En el momento de las entrevistas estaban bajo tratamiento residencial entre la cuarta y duodécima semanas en cinco diferentes instituciones cuyo tratamiento se basa en el modelo de Alcohólicos Anónimos. El análisis factorial que se realizó señaló que el modelo se ajustaba a tres factores. El Factor 1 hacía referencia a la intención de uso de cocaína; el Factor 2 expresaba deseos de consumo de cocaína; el Factor 3 hacía referencia a las expectativas positivas del consumo de cocaína. El instrumento también mostró una adecuada consistencia interna con un α=.87.

4.
Salud ment ; 33(3): 257-272, may.-jun. 2010. ilus
Article in English | LILACS-Express | LILACS | ID: lil-632771

ABSTRACT

Endomorphin-1 (EM1) and Endomorphin-2 (EM2) represent the two endogenous C-terminal amide tetrapeptides shown to display a high binding affinity and selectivity for the µ-opioid receptor as reported previously (see previous paper, Part I). Endomorphins injected into the VTA were shown to enhance the development of behavioral sensitization responses to amphetamine (AMPH), besides of inducing an increase of locomotion (horizontal) activity in animals. These studies showed that EM2 was significantly more potent than EM1 in modulating the increased opioid-mediated ambulatory responses by altering the dopamine (DA) projecting system in the globus pallidus in tested animals. Several transmission systems (e.g., GABA) have been shown to participate in the endormorphin-induced locomotor responses. EM1 injected into the VTA produced potent rewarding effects in rodents, similar to the rewarding responses produced by distinct opiate compounds. The opioid rewarding responses induced by EM1-2 were shown to be mediated via the activation of both GABAergic and the dopamine (VTA-NAc-PFCx) transmission systems in the brain. Moreover, EM1-2 peptides injected into the VTA, but not in the NAc, produced similar related-rewarding responses induced by low doses of morphine. However, ICV administration of EM1 was shown to enhance a significant conditioned-place preference (CPP); whereas EM2 displayed a place aversion in tested animals. With regard to stress-related behaviors and physiological responses in mammals, endomorphin peptides have been proposed to modulate the HPA axis function via activation of the NTS-projecting neural system impinging on hypothalamic neurons, and/or via activation of the PAG (ventrolateral area) mediating analgesic responses-induced by stress. EM1-2 peptides have been shown to induce mood-related behaviors. For instance, administration of EM1 induced an increased anxiolytic response in mice when tested in elevated plus maze paradigms, results that showed that the µ-opioid receptor modulates mood-related responses in animals and humans, as well. Interesting enough is the recent observation that EM1-2 peptides may induce antidepressant-like behaviors in animals models of stress and depression, whereby EM1-2 peptides have been shown to up-regulate in a dose-dependent manner the neuronal expression of the BDNF mRNA in rat limbic areas involved in stress and depressive-like behaviors. Thus, these studies led to the proposition that endomorphin peptides may play crucial roles in psychiatric disorders (e.g., depression, schizophrenia). Furthermore, over the past years, it has been shown that µ-opioid receptor agonists (e.g., morphine, DAMGO; morphine-6β-glucuronide) displayed potent orexigenic activities in the CNS of mammals, similar to that displayed by EM1-2 peptides, whose dose-dependent orexigenic activity appears to be mediated by the endogenous opioid peptide, Dynorphin A, acting on its cognate κ-opioid receptor at the hypothalamus. Extensive studies revealed the activity of the EOS (e.g., β-endorphin) on the regulation of gonadal hormones and sexually-induced behaviors (e.g., lordosis) in female rats. β-endorphin or morphiceptin have been shown to facilitate lordosis behaviors in estrogen- and/or estrogen/progesterone primed rats, whereas EM1-2 peptides injected into third ventricle or into the diagonal band (DB) produced dose- and time-dependent, naloxone-reversible lordosis responses in female rats. These results posit that EM1-2 peptides produce their sexual behaviors and mating responses via modulating the cell release of LHRH and modulating GABA transmission system in the brain. Endomorphins have been shown to impair short- and long-term memory processing in mice when exposed to different learning paradigms. These opioid mediated effects appear to be regulated through the interaction of both cholinergic and dopaminergic transmissions in the brain. In addition, endomorphins have been shown to modulate cardiovascular and respiratory bioactivities, acting on several rostrocaudal areas of the CNS of mammals. Administration of EM1-2 peptides induced a significant reduction of heart rate and blood pressure in normotensive and hypertensive rats, via regulation of GABA and glutamate transmission systems. Although the exact endogenous mechanisms by which EM1-2 peptides produce their vasoactive responses are still unclear, several studies suggested that the peptide activity depends on the synthesis and release of nitric oxide (NO) from endothelial cells enhanced by activation of µ-opioid receptors. Studies on respiratory function showed that EM1-2 peptides attenuate and produce significant respiratory depression in tested animals. Finally, EM1-2 peptides have been shown to induce important inhibitory gastrointestinal effects via the activation of µ-opioid receptors localized in myenteric-plexus neurons that innervate smooth-muscle cells producing a dose-dependent- and CTOP-reversible inhibition of electrically-induced twitch ileum contractions, probably mediated through a reduced release response of several peptide and non-peptide transmitters.


La endomorfina-1 (EM1) y la endomorfina-2 (EM2) son dos péptidos bioactivos que poseen la más alta afinidad de unión selectiva por el receptor opioide µ en comparación con la unión de distintos ligandos agonistas a este subtipo de receptor opioide (véase resumen y texto del capítulo anterior, parte I). Estudios farmacológicos y conductuales han demostrado que la inyección de las EM1-2 en el área ventrotegmental (AVT) genera respuestas conductuales de sensibilización locomotora a la anfetamina (AMPH), además de incrementar la actividad locomotora de tipo horizontal en los roedores tratados. Estos estudios mostraron que la EM2 fue significativamente más potente que la EM1 en inducir las respuestas locomotoras detectadas, mediadas a través de la alteración de la actividad sináptica de dopamina (DA) y en el globus pallidus de los animales tratados. Asimismo, estudios fármaco-conductuales similares demostraron que otros sistemas de transmisión participan conjuntamente con el sistema dopaminérgico en la generación de los efectos locomotores inducidos por las EM1-2, como es el caso del sistema gabaérgico (GABA). Más aún, la inyección de EM1 en la región AVT del cerebro de roedores mostró generar respuestas potentes de recompensa placentera, similares a las reportadas por distintos alcaloides opiáceos de alto potencial adictivo, posterior a su administración sistémica. Más aún, la inyección de endomorfinas en la región AVT del cerebro del roedor, mas no en el núcleo accumbens (NAc), mostró generar respuestas de recompensa paralela a la generada posteriormente a la administración de dosis bajas de morfina. En línea con los efectos farmacológicos inducidos por las EM1-2, estudios fármaco-conductuales demostraron que la administración ICV de la EM1 fue capaz de generar respuestas de preferencia de lugar en roedores tratados CPP, por sus siglas en inglés, conditioned place preference, en tanto que la administración de EM2 generó respuestas opuestas, esto es, respuestas de aversión al lugar. Estudios conductuales relacionados con el fenómeno de estrés mostraron que las EM1-2 son capaces de modular la actividad funcional del eje HHA (eje hipotálamo/hipófisis/glándula adrenal) a través de la activación del sistema de proyección neuronal del tracto solitario (NTS, por sus siglas en inglés), al hipotálamo y/o a través de la activación del área ventrolateral de la sustancia gris periacueductal (PAG, por sus siglas en inglés); componente importante del sistema opioide endógeno, que median respuestas analgésicas (antinociceptivas) inducidas por estímulos estresantes. Asimismo, la administración de endomorfinas (v.g., EM1) mostró generar incrementos de conductas de naturaleza ansiolítica en ratones expuestos a paradigmas experimentales de generación de conductas estresantes (v.g., laberinto elevado). Estos estudios sugieren que la generación de conductas de estrés-emocional inducidas por las endomorfinas es mediada a través de la activación del receptor opioide µ en neuronas del hipotálamo responsables de regular la secreción de factores liberadores de distintas hormonas hipofisiarias (v.g., CRH, LHRH). Más aún, resulta interesante que las endomorfinas sean capaces de inducir conductas antidepresivas o de tipo antidepresivos como se ha reportado recientemente en modelos animales de estrés y depresión. Estos estudios mostraron que las respuestas conductuales de reacción al estrés y las conductas antidepresivas mediadas por las EM1-2 están ligadas con la expresión neuronal del mensajero de RNA que codifica para el factor trófico (BDNF, por sus siglas en inglés, brain derived neurotrophic factor), en áreas del sistema limbico, y que es inducida en forma dosis-dependiente por las endomorfinas, posterior a su administración ICV. Por lo tanto, estos estudios han permitido proponer que las endomorfinas cumplen un papel relevante durante el curso o desarrollo de las enfermedades mentales (v.g., esquizofrenia y depresión). En extensión a estos estudios conductuales, estudios recientes han demostrado la actividad orexigénica de las endomorfinas en forma similar a lo previamente detectado con distintos ligandos agonistas del receptor opioide µ (v.g., morfina, DAMGO; morfina-6β-glucurónido). Si bien estos estudios mostraron que tanto las EM1-2 como diversos agonistas del receptor opioide µ exhiben potentes actividades orexigénicas en el SNC de roedores, la actividad de las EM1-2 parece depender de la actividad de la dinorfina A y su unión sobre su receptor opioide K en neuronas hipotalámicas. Más aún, diversos estudios han mostrado que el sistema opioide endógeno (a través de la β-endorfina) regula conductas de naturaleza sexual y apareamiento (v.g., lordosis), además de modular la secreción y/o actividad de hormonas de origen gonadal (estrógenos, progesterona). Estudios similares en roedores hembras mostraron que la microinyección de EM1-2 en áreas específicas del sistema límbico y/ o la administración IT de ambos péptidos era capaz de generar respuestas sexuales de apareamiento, similares a las detectadas por la p-endorfina y morficeptina en la misma especie de animal, siendo bloqueados los efectos por la administración de naloxona. Estas respuestas conductuales inducidas por las EM1-2 mostraron estar ligadas a la liberación neuronal de LHRH, como de la activación y modulación del sistema de transmisión gabaérgico. En cuanto a las funciones de memoria y aprendizaje, diferentes estudios han demostrado que la administración ICV de EM1-2 en ratones expuestos a diferentes paradigmas de aprendizaje experimental, los péptidos opioides alteran significativamente los mecanismos de procesamiento y consolidación de memoria a corto y largo plazo en los animales tratados. Estos efectos parecen depender de la modulación del sistema opioide (v.g., el receptor opioide µ) sobre los sistemas de transmisión colinérgica y dopaminérgica en el cerebro de los mamíferos. Asímismo, diversos estudios han demostrado que tanto las EM1-2 como los alcaloides opiáceos y opioides endógenos modulan funciones cardiovasculares y respiratorias. En este contexto, diversos estudios mostraron que la administración de EM1-2 en ratas normotensas e hipertensas produce cambios fisiológicos significativos en la presión sanguínea y la frecuencia cardiaca. Si bien no están del todo esclarecidos los mecanismos por los cuales las endomorfinas producen sus respuestas cardiovasculares, diversos estudios sugieren que la actividad de estos péptidos está en función de la actividad e interacción de los sistemas de transmisión gabaérgico y glutamatérgico, respectivamente. Más aún, otros estudios sugieren que las respuestas fisiológicas de estos péptidos dependen de la actividad del óxido nitroso (NO, por sus siglas en inglés) liberado de los vasos sanguíneos, en respuesta de la activación del receptor opioide µ. Finalmente, diversos estudios han mostrado que las EM1-2 y la activación del receptor opioide µ producen efectos inhibitorios sobre la contracción del músculo liso del tracto gastrointestinal, generados a través de una reducción sostenida en la liberación de neurotransmisores de terminales sinápticas del plexo mientérico, mismas que inervan el tejido muscular liso del tracto gastrointestinal.

5.
Salud ment ; 33(2): 179-196, mar.-abr. 2010. ilus
Article in English | LILACS-Express | LILACS | ID: lil-632761

ABSTRACT

The present paper describes several aspects of the biological activities, physiological and behavioral responses displayed by the most recent discovered opioid peptides: endomorphins. Endormorphins comprise two endogenous C-terminal amide tetrapeptides, named as endomorphin-1 (EM1; Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (EM2; Tyr-Pro-Phe-Phe-NH2), which were discovered a decade ago (1997) by Zadina's group. Initially, they reported the identification of two endogenous opioid peptides that displayed high binding affinities and selectivities for the µ-opioid receptor among other identified and cloned opioid receptors. These led authors to support the hypothesis that endomorphin peptides represent the endogenous ligand agonists for the µ-opioid receptor. Both peptides were identified and isolated from bovine and human brains. They consist of four amino acids that share a 75% structural homology among amino acids, and which display the structural α-amidated form of C-terminal -Phe- residue, as demonstrated for many other bioactive neuropeptides. These peptides are structurally distinct from other endogenous opioid substances identified in the brain of mammals, although they share some similarities with other amide terapeptides such as Tyr-W-MIF-1, found also in the mammalian brain. Here, we review the structure-relationship activity of both endomorphin molecules comparing their binding properties to different opioid receptors. Both EM1/EM2 peptides appear to be vulnerable to enzymatic degradation when exposed to the activities of different proteolytic enzymes, as occurs with many other neuroactive peptides found in the SNC of mammals. Immunohistochemical studies showed the wide and asymmetric distribution of both EM1-2 peptides in the brain, leading to the extensive pharmacological, cellular, and physiological studies that demonstrated the wide and varied bioactivities displayed by these peptides at both central and peripheral tissues. These studies led several authors to suggest the potential endogenous role of these peptides in major physiological processes (e.g. analgesia or antinociception). Based on the generation of specific (rabbit) polyclonal antibodies and the use of combined radioimmunoassay (RIA) techniques and immunohistochemical procedures, it was shown the wide distribution of EM1-2-LI (endomorphin1-2-like immunoreactivities) throughout the brain of different species (e.g. rat, primate, human), particularly co-localized in specific areas where µ-opioid receptor has been shown to be expressed. IHC mapping of endomorphin material in the CNS showed a parallelism with the neuroanatomical distribution of other endogenous opioid peptides (e.g. Met/Leu-enk, Dynorphin A, β-endorphin) previously reported. These studies showed for instance that, whereas EM1-LI was shown to be widely and densely distributed throughout the brain, particularly in forebrain structures (e.g. nucleus accumbens [NAc]; cortex [Cx]; amygdale [AMG]; thalamus [Th], the hypothalamus [Hyp], the striatum [CPu]), including the upper brainstem (BS); and dorsal root ganglia (DRG); EM2-LI is highly expressed in spinal cord and lower brainstem. Interesting enough is the demonstration of the expression of EM1-2-LI outside the CNS (e.g. spleen, thymus and blood), and detected in immune cells (e.g. macrophages/monocytes, lymphocytes, and polymophonuclear leucocytes) surrounding inflammatory foci. Pharmacological studies showed that these peptides displace with high potency several µ-opioid receptor ligands agonists in a concentration-dependent manner. Moreover, EM1-2 peptides have been shown to modulate the release of several conventional transmitters from neurons (e.g. DA, NA, 5-HT, ACh) besides on active neurohormones. Additionally, in vitro and in vivo studies showed that both EM-1/EM-2 peptides produce their pharmacological and biological effects by stimulating either µ1 or µ2-opioid receptors, which mediate the distinct pharmacological activities detected for each peptide. Cellular studies showed that both EM-1/EM-2 peptides induce a potent granule/vesicle endocytosis and trafficking of µ-opioid receptor in cells transfected with the µ-opioid receptor cDNA; following some endocytosis responses and µ-opioid receptor trafficking mechanisms shown in enteric neurons; cells previously reported to express naturally µ-opioid binding sites on cells. Endomorphins have been shown to induce potent antinociceptive responses after ICV or IT administration into mice; to modulate nociceptive transmission and pain sensation into the brain after stimulating peripheral nociceptors on primary neuronal afferents; and to generate cross-tolerance between endomorphin peptides and between EM1 and opiate compounds, such as morphine.


Este artículo resume varios aspectos de las múltiples actividades biológicas, celulares, efectos farmacológicos, respuestas fisiológicas y conductuales de dos nuevas sustancias peptídicas de naturaleza opioide, descubiertas recientemente y denominadas endomorfinas. Las endomorfinas son dos péptidos opioides, clasificados como endomorfina-1 (EM1, Tyr-Pro-Trp-Phe-NH2) y endomorfina-2 (EM2, Tyr-Pro-Phe-Phe-NH2), cuyas secuencias peptídicas fueron identificadas y aisladas del cerebro de bovino y humano por el grupo de Zadina en 1997. Estudios de unión radioligando-receptor demostraron que estos péptidos se unen con alta afinidad de unión al receptor opioide µ en relación con su capacidad de unión a otros subtipos de receptores opioides (kappa [κ], delta [δ] ), previamente identificados en el SNC de mamíferos. Ambos péptidos están compuestos por cuatro aminoácidos y son estructuralmente distintos de las demás sustancias opioides endógenas conocidas. Esta revisión detalla con precisión diversos aspectos de la farmacología y actividades celulares de estos opioides y sus implicaciones en la modulación de distintas circuitos o vías neurales y funcionamiento del SNC de los mamíferos, respectivamente. Los estudios relacionados con la función estructura-actividad de estos péptidos han mostrado que, al igual que la mayoría de los péptidos bioactivos endógenos de naturaleza opioide y no opioide, son vulnerables a la escisión peptídica por cortes enzimáticos mediante la exposición a distintas enzimas proteolíticas que pudiesen participar en la degradación endógena de las endomorfinas, y la obtención de diversos productos de degradación. Asimismo, este artículo menciona la amplia distribución neuroanatómica que poseen las endomorfinas en distintas regiones del cerebro, particularmente en aquellas que regulan el procesamiento y la transmisión de la información nociceptiva y que, por tanto, reflejan el papel potencial de estos péptidos en procesos fisiológicos de analgesia, entre muchos otros (memoria y otro aprendizaje). En este contexto, diferentes estudios basados en el empleo de ensayos inmunológicos (radioinmunoensayos [RIA] y técnicas de inmunohistoquímica [IHC]) que requieren el uso de anticuerpos específicos generados contra las secuencias consenso de las endomorfinas mostraron una amplia distribución de material inmunoreactivo a endomorfina (vg., EM1-LI, EM2-LI) en tejidos neurales de humano, bovino y roedores. Por ejemplo, la EM1-LI mostró una distribución relativamente abundante en una gran mayoría de las regiones del SNC de mamíferos estudiados, particularmente en la región rostral y superior del tallo cerebral, así como en el núcleo accumbens (NAc), la corteza prefrontal y frontal (PFCx), la amígdala (AMG), el tálamo (TH), el hipotálamo (HPT), el estriado (CPu) y fibras nerviosas de la raíz del ganglio dorsal (DRG). En contraste, la expresión de EMZ mostró ser muy abundante en la región de la médula espinal y en la región caudal del tallo cerebral. La distribución de material inmunoreactivo a EM1-2 en el SNC de mamíferos mostró similitudes en cuanto a la distribución neuroanatómica reportada para otros péptidos opioides endógenos, previamente identificados (vg., encefalinas, dinorfinas, endorfinas). Así mismo, estudios paralelos lograron identificar la presencia de EM1-2-LI en órganos periféricos (vg., bazo, timo, células inflamatorias del tipo de macrófagos-monocitos, linfocitos y leucocitos PMN) y en plasma. Más aún, diversos estudios farmacológicos han mostrado que las actividades biológicas y respuestas fisiológicas de las EM1-2 están mediadas a través de la estimulación de los subtipos de receptores opioides µ1 y µ2. Estudios de inmunohistoquímica (IHC) demostraron la colocalización del receptor opioide µ y las EM1-2 en diversas regiones del SNC de mamiferos. Esto ha permitido proponer que las EM1-2 representan una nueva familia de péptidos opioides con funciones neuromoduladoras relevantes en el SNC, las cuales intervienen en la regulación de los procesos biológicos de percepción del dolor; respuestas de estrés; funciones límbicas de placer y recompensa inducidas por incentivos naturales y/o sustancias psicotrópicas; funciones de estado de alerta y vigilia, funciones cognitivas (de aprendizaje y memoria) y actividades de regulación neuroendócrina. Además, diversos estudios celulares han mostrado que ambos péptidos opioides son capaces de inducir la internalización aguda o endocitosis del receptor opioide µ en células somáticas transfectadas con el ADN (ADNc) que codifica este mismo receptor opioide. Al igual que otros péptidos opioides (v.g., encefalinas), diversos estudios mostraron el catabolismo enzimático de estos péptidos amidados mediante la actividad de enzimas proteolíticas (v.g., carboxipeptidasa Y, aminopeptidasa M), lo que ha permitido sugerir que estos péptidos opioides son degradados por rutas de degradación enzimática similares que rigen para múltiples péptidos bioactivos moduladores en el SNC de los mamíferos. Al igual que otros péptidos endógenos, ambas endomorfinas mostraron la capacidad de modular la liberación neuronal de neurotransmisores (DA, NA, 5-HT, ACh) y hormonas peptídicas en áreas específicas del cerebro de los mamíferos. Asimismo, ambos péptidos mostraron una capacidad de generar efectos antinociceptivos potentes en forma dosis-dependiente posterior a su administración ICV o IT en animales experimentales, además de generar respuestas de tolerancia cruzada entre ambas endomorfinas y/o entre la EM1 y alcaloides opiáceos del tipo de la morfina.

SELECTION OF CITATIONS
SEARCH DETAIL